If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-16b+19=0
a = 1; b = -16; c = +19;
Δ = b2-4ac
Δ = -162-4·1·19
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-6\sqrt{5}}{2*1}=\frac{16-6\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+6\sqrt{5}}{2*1}=\frac{16+6\sqrt{5}}{2} $
| x+29+2x-9+x=180 | | 180-50=x+33 | | -1/5u-6=1/3u-1/5 | | 6p+1.09=8.72 | | 5/7=x35 | | 5x+7/4x=x+3/18 | | (4.76)(12.5=i | | r-19=27 | | x-7+3x-3+x=180 | | 11x+-21=17+-8x | | -9+2x+10=x+9 | | 180-(x+10)=x | | 11x+5-12=-15+x+8+10 | | 2(w-9)=12 | | 11x+-12=17+-8x | | -6x-28=-7(8x+4) | | 4n-5=-1,3,7,11 | | -6x-28=-7(8x+4)(x=0) | | 5.6g+8=1.6g+16 | | 180-(2x+2)=x | | 3=-5/8+y | | 4k=7=-1 | | 25^2x=125^x+2 | | v+-395=145 | | -2^n=2^n | | 5c^22=+4c+1-c+8 | | 98/14=7/y | | 32=p-124 | | 21h=336 | | -26.9=x/8-1.3 | | 8*4.50s=57.50 | | p-11=621 |